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Abstract: Robotic-assisted unicompartmental knee arthroplasty
(UKA) is accurate and repeatable. Lateral UKA is still considered
a challenge, as the lateral side of the knee has different anatomy
and kinematics compared with the medial side. The lateral com-
partment of the knee is less constrained than the medial compart-
ment and is therefore less tolerant for mobile-bearing implants and
ACL deficiency. However, the long-term outcomes of lateral UKA
are scarce. Moreover, the impact of patellofemoral joint degener-
ation on the outcome of lateral UKA is unknown. We report our
preliminary results with fixed bearing robotic-assisted lateral UKA,
which are encouraging in the short term.
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Unicompartmental knee arthroplasty (UKA) is gaining
popularity in the treatment of patients with isolated

knee compartment osteoarthritis (OA).1 Compared with
total knee arthroplasty (TKA), the results of UKA are
superior with regard to restoration of normal knee kine-
matics,2 perioperative morbidity, blood loss, infection rates,
knee range of motion (ROM), and recovery time.3–10

Isolated lateral compartment OA accounts for only 5%
to 10% of knee OA cases11–14 and not surprisingly, lateral
UKA comprises only 1% of all knee arthroplasties per-
formed.12 Lateral UKA is considered a more demanding
procedure compared with medial UKA. Although early
studies reported superior results of lateral UKA comparing
to medial UKA,15,16 improvements in surgical technique and
implant design has led to better survivorship of medial
UKA.17,18 The improved survivorship has been attributed to
the differences in anatomy and kinematics between the lateral
and the medial compartments of the knee. For example, the
hypermobility of the lateral compartment has been proposed
as one of the explanations for the higher incidence of poly-
ethylene dislocation in mobile-bearing lateral UKA
implants.17 Computer-assisted orthopedic surgeries have
been shown to improve postoperative leg alignment when
compared with conventional UKA.19,20 Recently, a robotic-
assisted surgery for UKA (MAKO Surgical Corp., Fort
Lauderdale, FL) was introduced and became the first robotic
arm–assisted technique for minimal invasive UKA.21 This
new robot is “semiactive,”22 where by the surgeon is guided
to work under haptic boundaries around specific surgical

targets. These boundaries and targets are determined by
preoperative computed tomography (CT)-based planning
with continuous intraoperative visual feedback.22

This new robotic technique has been shown to
improve postoperative implant positioning, lower extremity
alignment, and to be more accurate and less variable than
manual techniques in UKA.23–25 However, the clinical
effect of it has not been shown yet as long-term clinical
trials are still missing.

The purposes of this review are to discuss the differ-
ences in anatomy and kinematics between the medial and
the lateral compartment of the knee, to describe the oper-
ative management of patients who undergo robotic-arm
lateral UKA, and to review the outcomes of lateral UKA.

LATERAL COMPARTMENT ANATOMY
AND KINEMATICS

Anatomy and kinematics of the lateral compartment of
the knee are different from the medial side.11,26 The lateral
compartment is more mobile than the medial compartment.
During flexion, the tibia rotates internally with the center of
rotation located on the medial side of the knee.27,28 These
findings have been confirmed by in vivo 3-dimensional (3D)
weight-bearing kinematics using fluoroscopy and CT.29 These
kinematics lead to excessive internal rotation of the lateral
tibial compartment, which results in lateral femoral condyle
posterior translation as compared with the medial femoral
condyle.27,30,31 Furthermore, the bony anatomy differs
between the 2 compartments. The sagittal tibial slope is greater
on the lateral side and the lateral tibial condyle is convex in the
sagittal plane, whereas the medial condyle is concave. These
differences in biomechanics explain the differences in wear
patterns after TKA and the occurrence of cartilage wear in the
native knee.11,32,33 Medial compartment disease usually
involves the anteromedial aspect of the tibia and symptoms are
more prevalent in extension (while walking or getting up from
a seated position with the knee in moderate flexion). In lateral
compartment disease the symptoms are more pronounced
when rising from a deep seated position or during stair
climbing (flexion disease). Lateral compartment disease usually
causes posterolateral wear on the tibia and on the femur.

Burton et al34 reported the wear patterns following
medial and lateral UKA using fixed or mobile-bearing
implants in a knee simulator designed for wear analysis.
Fixed-bearing implants had less wear compared with the
mobile-bearing UKA. Nevertheless, in both types of
implants, the lateral compartment had higher wear volume.

The passive and dynamic stabilizers of the compart-
ments are also different. On the medial side knee stability is
supported by the medial collateral ligament, a strong and
isometric ligament. However, the lateral side is supported
mainly by dynamic stabilizers such as the popliteal muscle
and iliotibial tract.35 Moreover, the lateral compartment
can be distracted on average up to 7mm compared with the
medial side which is limited to 2mm distraction.36
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Therefore, inferior outcomes were reported with the use of
mobile-bearing implants in the lateral compartment com-
pared with the medial compartment, mainly due to the
polyethylene insert dislocation rate.17,37 Robotic UKA
utilizes a fixed-bearing implant (MCK Medial Onlay Uni-
compartmental; MAKO Surgical Corp.), which may result
in a lower failure rate in the lateral compartment.

PATIENT SELECTION AND
PREOPERATIVE EVALUATION

The indication for lateral robotic UKA should be based
on the clinical history and examination followed by a radio-
graphic evaluation. The indications for lateral UKA are more
restricted compared with medial UKA.12 The primary symp-
tom is knee pain, located to the lateral compartment with no
medial compartment–related pain. Patellofemoral joint (PFJ)
degenerative changes are not considered a contraindication,
but patients should be excluded if they experience anterior
knee pain related to the PFJ degeneration. Some authors
consider type-4 PFJ degenerative changes (Outerbridge clas-
sification) or PFJ-related pain as contraindications to lateral
UKA.11,26,38,39 We retrospectively looked at 19 patients with
no preoperative PFJ-related pain after lateral robotic UKA.
No correlation was found between PFJ congruence and PFJ
degenerative changes before the surgery and clinical outcomes
(WOMAC) on an average of 2 years of follow-up (Ran Thein,
MD and Andrew D. Pearle, MD; 2013, unpublished data). To
the best of our knowledge, there is no published study about
the influence of the PFJ on lateral UKA. Although UKA may
be indicated and reported with rheumatoid arthritis,26

inflammatory arthritis remains a subject of debate, and most
authors consider it as a contraindication.14,40 Moreover,
patients should also be assessed based on their general medical
condition as UKA have been reported to have less perioper-
ative complications than TKA.7

On examination, coronal and sagittal alignment as
well as ROM should be recorded. Our indications for lat-
eral robotic UKA are a fixed-flexion deformity of <10
degrees and knee flexion of Z100 degrees, correctable
valgus deformity which is assessed clinically compared with
the contralateral leg. If the clinical examination is not
conclusive, additional stress radiographs have to be per-
formed. Anteroposterior (AP) laxity should be evaluated as
well. ACL deficiency (ACLD) as a contraindication to
medial UKA remains a matter of debate.41 However, the
lateral compartment’s inherent hypermobility significantly
increases in ACLD knees.42,43 Therefore, patients with
ACLD have been excluded from lateral robotic UKA.44,45

Obesity is considered by some as an exclusion criterion
in lateral UKA. The authors do not exclude performing
TKA in those patients.40 However, overweight is not con-
sidered as contraindication by others.14,26,46 We consider
body mass index >35 as contraindication for lateral UKA.

Radiographic evaluation includes lateral and standing
AP x-rays,14,47 skyline or Merchant views, and hip to ankle
standing film for determination of alignment.11,40 In addi-
tion, posteroanterior (PA) radiographs such as the Rosen-
berg view48 might be added as an additional tool to the
regular AP radiographs for assessing the typical posterior
tibia cartilage wear on the lateral side. On AP and PA
radiographs, arthritis should be limited to the lateral
compartment of the knee with significant loss of joint
space.46,49–52 However, we do not consider osteophytes or
chondrocalcinosis as contraindication if the medial

compartment joint space is preserved.14 Few authors have
recommended varus and valgus stress radiographs for
evaluating joint space and the ability to correct valgus
deformity.40,46,53 We consider insufficiency of the medial
stabilizers and a fixed valgus deformity to be contra-
indications for lateral UKA.26,46,53

OPERATION TECHNIQUE
Detailed description of the operation room setting before

the surgery and technical issues related to the robotic UKA
surgical procedure in general have been reported in the past.22

Briefly, on preoperative assessment, CT scans are obtained
for all patients. Using the software of the Tactile Guidance
System (TGS; MAKO Surgical Corp.), all CTs are segmented,
defined, and recombined to produce 3D models of the femur
and tibia. Implant models are then positioned, with corre-
sponding cement mantles on the reconstructed bone models,
resulting in patient-specific CT-based planning22 (Fig. 1).

In the OR, the TGS is placed before the patient arrives.
After sterile draping of the patient and the robotic arm, a 3D
calibration is applied. Few authors have reported the medial
parapatellar approach for lateral UKA with surgeons more
familiar with conversion to TKA, if needed.11,26 We usually
performed lateral robotic UKA through lateral parapatellar
incision. Our incision is about 2.5 to 3 inches long which is
about 0.5 inch more than for medial UKA to allow patellar
subluxation without causing damage to the extension mech-
anism. For the same reason, patellar subluxation is per-
formed in 45 degrees of flexion. Compared with the manual
UKA which is based on cutting jigs with a saw, the robotic
UKA is performed with a 6mm burr which is safer for
working adjacent to the extension mechanism especially in
more demanding lateral UKA surgery.

After knee registration based on the preoperative CT is
completed and osteophytes are removed followed by release
of soft-tissue adhesions, a dynamic soft-tissue gap balancing
algorithm is initiated. Full ROM of the knee joint is eval-
uated. A knee pose (assessment of coronal alignment) is
taken in full extension to define the initial limb alignment.
The knee is then taken to 10 degrees of flexion to release the
tension in the posterior capsule, and a varus stress is added to
the knee, while dynamically evaluating the mechanical axis.
Once the desired correction is achieved, it is defined and
registered in the system and the knee is now taken through a
full ROM. A visual representation of the tibial and femoral
components relationship is displayed, using bar graph, for
each captured pose angle. Each bar represents knee tightness
or looseness at different angles. A major advantage of CAS is
this virtual modeling of the knee and intraoperative tracking.
This allows real-time adjustment to achieve correct knee
kinematics and soft-tissue balancing before performing any
bony cuts. On the basis of gait analysis, we aim to under-
correct the mechanical axis after lateral UKA (valgus of 1 to
3 degrees) (Fig. 2). During weight bearing, in intact knees,
load is shifting to the medial side of the knee. Locomotion
studies have shown that during the stance phase, the knee
experiences a valgus moment at the very beginning (heel-
strike) followed by a varus moment with 2 distinct peaks.54

This gait pattern is our major reason for the mechanical
alignment undercorrection. If overcorrection is applied, the
medial compartment will experience overload which might
lead to early failure. It has been shown that overcorrection on
the medial side is correlated with higher incidence of failure.55
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In a preliminary study, we compared the mechanical axis
correction between medial and lateral robotic UKA (229 knees
and 37 knees, respectively). Overcorrection was noticed in 4%
of the medial UKA, and 11% of the lateral UKA (Andrew D.
Pearle, MD; 2013, unpublished data). The difference between
the preoperative “virtual” planning and the postoperative
weight-bearing radiographic alignment was greater in lateral
UKA when compared with medial UKA, 1.86±1.33 and
1.33±1.2 degrees, respectively (P=0.019). These data suggest
that lateral compartment replacement is more prone to over-
correction, even when using CAS and the robotic-arm techni-
que [These data were presented at International Society for
Technology in Arthroplasty (ISTA), 2013, Palm Beach, FL,].
We recommend strict attention to intraoperative evaluation of
alignment correction in lateral UKA.

After all adjustments are implemented in the software,
the plan can be executed by the surgeon using the robotic
arm. A high-speed burr is attached to the distal end of the
robotic arm. The surgeon moves the arm by guiding its force-
controlled tip within the predefined boundaries. The robot
gives the surgeon active tactile, visual, and auditory feedback
during burring. If there is an attempt to use the robotic arm

outside of the boundaries, the robot causes auditory feedback
and motion resistance to keep the burr within the accepted
volume. In addition, the cutting instrument will immediately
stop if there is excessive force at the limits of the 3D cutting
volume or rapid movement of patient anatomy. The femoral
side is prepared first, starting at the most anterior and
proximal part of the lateral femoral condyle and proceeding
with caution as to not injure the patella. When burring the
posterior condyle, the knee needs to be in 110 degrees of
flexion. Once the femoral side is ready, the tibial side is then
addressed. The knee is flexed to 100 degrees for preparation
of the lateral tibial plateau.

The average surgical time is about 60 minutes, including
15 minutes of exposure and registration. Usually the patients
are discharged from hospital on the day following the surgery
and are allowed to weight bear as tolerated.

LATERAL UKA OUTCOMES
Traditionally, lateral UKA is considered more tech-

nically demanding than medial UKA. The introduction of
CAS with a robotic-arm technique may facilitate the

FIGURE 1. Preoperative templating. All patients undergo CT scanning before surgery. Computer-assisted design models of the
implanted components are templated onto the 3D reconstructed images using computer software. A, Axial view of the virtual tibial
component on the tibia. The implant is 3 degrees internally rotated relative to the tibia. B, Axial view of the tibial and the femoral virtual
components. C, Coronal view of the knee with the virtual implants. The tibial component is in 0.1 degrees of varus related to the tibial
axis. D, Sagittal view of the knee with the virtual implants. The tibial component has 5 degrees of posterior slope related to the axis of
the tibia.
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procedure and lead to better repeatability. Lonner et al24

have shown that by using CAS with robotic-arm technique
implant alignment errors were decreased. The authors
reported that in the conventional manual technique, mean
tibial slope error was 3.1 degrees compared with 1.9 degrees

using the robotic technique. Moreover, the variance of the
implant alignment was 2.6 times less in the robotic method.
In the coronal plane, the average error of tibial alignment
was only 0.2 degrees of varus compared with 2.7 degrees
with the manual technique.24 Cobb and colleagues have
reported significant improvements in root mean square
(RMS) implant placement Errors between the manual
technique and the robotic technique. Compared with a
manual technique, the robotic surgery reduced the medio-
lateral error from 2.6 to 1mm, the AP error from 2.4 to
1.8mm, and the proximal-distal error from 1.6 to 0.6mm.
We performed a cadaveric study implanting UKA using
robotic technique on the right side and manual technique
on the left side. RMS implant placement errors for femoral
component were within 1.9mm and 3.7 degrees in all
directions of the planned implant position for the robotic
group, whereas RMS errors for the manual group were
within 5.4mm and 10.2 degrees. Average RMS implant
placement errors for tibial component were within 1.4mm
and 5.0 degrees in all directions for the robotic group,
whereas for the manual group, RMS errors were within
5.7mm and 19.2 degrees.56 Moreover, flexion-extension,
varus-valgus, and rotations errors were significantly
reduced as well.23 These results have been supported by
Dunbar et al.25 However, there are no published studies
reporting long-term clinical outcomes of robot-assisted
lateral UKA. In our preliminary study, we evaluated 25
patients (26 knees) for clinical and radiographic outcomes

FIGURE 2. “Virtual” mechanical axis. The “virtual” intraoperative
coronal mechanical axis as perceived by the robotic device dur-
ing the procedure, in this case 2.5 degrees of valgus (182.5
degrees).

FIGURE 3. A right knee preoperative anteroposterior full weight-bearing radiograph of a 56-year-old female with lateral compartment
degenerative changes.
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at an average of 2 years after robotic lateral UKA (Figs. 3,
4). The average age of patients was 63±13 years, body
mass index was 26.35±4.7, and Kellgren-Lawrence (K-L)
grade was 2.5±1. Preoperatively, the mechanical axis of
the operating leg was on average 4.1 degrees of valgus,
which improved to 1.64 degrees postoperatively.

WOMAC scores improved significantly (P<0.001) at
2-year follow-up. In our series, there were no complica-
tions, revisions, or conversions to TKR (Andrew D. Pearle,
MD; 2013, unpublished data). Additional investigation,
with long-term clinical outcomes, comparing conventional
and robotic UKA is needed to determine whether this dif-
ference will stay significant. Moreover, the cost-effective-
ness of robotic UKA when compared with conventional
UKA is still unknown.

Historical studies published in the 70s showed that the
outcomes of lateral UKA were superior to medial
UKA.15,16 However, improvements in design and surgical
technique have led to improved medial UKA outcomes
over the lateral UKA particularly with mobile-bearing
implants.17,18 Recently, few studies have shown encourag-
ing lateral UKA outcomes.46,51,57 At long-term follow-up

series reported by Argenson et al46 has shown that Knee
Society pain and function scores were improved sig-
nificantly and prostheses survivorship was 92% at 10 years
and 84% at 16 years.

CONCLUSIONS
Lateral UKA is still considered a challenging proce-

dure. Compared with the medial compartment, the lateral
compartment is less constrained and has a different ana-
tomic structure which leads to hypermobility. Furthermore,
lateral UKA is 10 times less commonly performed than
medial UKA. The CAS with robotic arm is a new surgical-
assisted technology. It enables meticulous preplanning and
has the ability to reevaluate intraoperative knee kinematics,
alignment, and the knee path of movement. Moreover, it
has been shown to produce more accurate and repeatable
UKA implant alignment compared with the conventional
UKA technique. However, patient selection, preoperative
clinical and radiographic evaluation, and surgical technique
are still the critical requirements for lateral UKA success.
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